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Abstract—Trusted execution environments (TEEs) aim to offer
strong privacy and integrity guarantees even in the presence
of root level attackers capable of arbitrarily modifying the
system’s software. Recently however, there has been a pivotal
shift in TEE deployment, moving TEEs from enclaves running
on PC-oriented hardware to confidential virtual machines
executing on server-grade CPUs. Under the hood, this change
has also resulted in significant modifications to the underlying
memory encryption engine, removing integrity guarantees and
protections against replay attacks. While Intel’s and AMD’s
change in TEE implementation is clearly significant and sub-
stantial, most TEE deployments appear to fail to acknowledge
the difference in security guarantees, assuming a stronger
security model than truly afforded by the implementation.

Thus, in this work we investigate the true protection offered
by Intel’s and AMD’s newest TEE offerings against entry-
level physical side-channel attacks. We show that, contrary
to popular belief, bus interposition attacks on DDRS server
memory can be constructed cheaply by hobbyists, using parts
easily obtained on e-commerce websites. Next, combining our
ability to monitor DDRS bus transactions with deterministic
memory encryption used by Intel’s SGX and TDX as well as
AMD’s SEV-SNP, we are able to extract secret key material
(such as attestation keys in some cases) from machines in fully
trusted status. Finally, we demonstrate the implications of our
attacks on multiple real world TEE deployments.

1. Introduction

Starting from humble origins as secure enclaves running
on Intel client machines, Trusted Execution Environments
(TEEs) have undergone a revolution, and are now present
on nearly all server-grade hardware deployments. Offering
strong confidentiality and integrity guarantees even against
root-level adversaries, users can now run enclaves or even
entire virtual machines (VMs) on remote third party hard-
ware, while being assured that their data and code is being
offered strong hardware-backed security guarantees via a
robust attestation process. Building on these foundations
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TEEs are now even supported by GPUs, aiming to allow
confidential Al applications.

However, the deployment of TEEs on server hardware
by vendors such as Intel, AMD and NVIDIA, coupled with
the sun-setting of SGX on client machines, has resulted
in significant changes in the security guarantees offered by
server-based TEE implementations compared to Intel’s orig-
inal (now deprecated) client-oriented SGX implementation.
More specifically, unlike client-based SGX, server TEEs use
deterministic AES-XTS for memory encryption, and do not
offer Merkle tree-based integrity or replay protections in
the case of hardware attacks on the machine’s memory bus.
This degraded protection in turn comes with usability and
performance benefits, allowing server TEEs to support large
regions of protected memory (up to terabytes in some cases),
thus making VM support feasible while reducing latency and
bandwidth for memory accesses [1, 2].

While prior work [3, 4, 5] had demonstrated the risk of
deterministic encryption on server hardware via cheap home
made DDR4 bus interposition setups, the latest generation
of TEE hardware (e.g., Intel TDX, AMD SEV-SNP with
ciphertext hiding, or NVIDIA’s Confidential Compute) run
exclusively on systems equipped with DDRS memory and
thus remain out of scope. Thus, in this paper we investigate
the true feasibility of mounting memory bus attacks against
modern DDRS-based TEE deployments. More specifically,
in this paper we ask the following questions:

How can adversaries mount memory interposition at-
tacks on DDR5-based TEE implementations? What are
the security implications of these attacks and can they be
mounted by hobbyist-level attackers with limited budgets?

1.1. Our Contributions

In this paper we demonstrate for the first time a mem-
ory bus interposition attack on server grade DDR5 mem-
ory. Moreover, our attack can be done in under $1000
by computer hobbyists using equipment readily available
on the secondhand market. Next, we use our interposition
setup to observe memory bus transactions on Intel Xeon



Scalable 5th Generation and AMD Zen 5 systems, thereby
(re-)enabling ciphertext-based attacks on these machines.
More specifically, we break SGX and TDX security guar-
antees by extracting attestation keys from machines in a
fully trusted UpToDate attestation status. With extracted
attestation keys in hand we demonstrate the effectiveness
of our attacks by breaking the security guarantees of realis-
tic deployments, including running GPU workloads outside
TEE protections while passing attestation for NVIDIA Con-
fidential Computing. Finally, we attack the newest version
of AMD SEV-SNP present in Zen 5 EPYC processors,
which includes ciphertext hiding features for preventing
prior software-based ciphertext attacks [6]. To the best of our
knowledge, these are the first ciphertext attacks on DDRS-
based systems, including SGX, TDX and SEV-SNP. Our
results impact nearly all server-based TEE implementations
with commercially-available hardware at the time of writing.
Interposing DDRS Memory. We begin our attack
by extending prior bus interposition attacks [3] on DDR4
memory running at 1333 MT/s to DDRS5 memory. While
we empirically observe that server DDRS RDIMMs cannot
operate below 3200 MT/s, we do notice that unlike their
DDR4 counterparts, DDRS DIMMs contain two indepen-
dent channels on a single memory module. Thus, while
DDRA4 interposition requires about 136 logic analyzer inputs
per memory channel, DDRS5 setups only require 68, allowing
us to use the remaining hardware capacity for increasing
acquisition speed. Overall, this allows us to design a logic
analyzer probe that can be constructed by computer hobby-
ists operating on a sub-$500 budget, with the entire DDR5
bus snooping setup costing under $1000. See Figure 1.

Figure 1: Our memory interposition setup, with target machine (left) and
logic analyzer (right). Notice the gray wires from the DIMM interposer.

Controlling Enclave Execution. With our ability to ob-
serve DDRS5 memory transactions, our next step is to obtain
a sufficient level of control over SGX and TDX execution.
First, while Intel requires at least § DIMMs (e.g., 16 chan-
nels for DDRS memory) for TDX and SGX activation, our
setup is only capable of observing a single channel. Thus, we
first reverse engineer the mapping between physical address
and DIMM locations on 5th generation Intel Scalable Xeon
systems. Next, we modify the OS kernel to place virtual
addresses of interest on the DIMM and channel connected to
our logic analyzer, allowing us to observe memory transac-

tions to these addresses. Finally, we overcome the system’s
caching and force DRAM traffic via flushing, while using a
control channel attack to precisely control TEE execution,
synchronizing it to our logic analyzer triggering logic.
Attacking TDX and SGX Attestation. With our ability
to control TEE execution in hand, we notice that both TDX
and SGX attestation rely on a single source of trust, namely
an Intel-signed Provisioning Certification Enclave (PCE),
running under the machine’s SGX protections. Combining
this observation with Intel’s use of deterministic AES-XTS
encryption, we are able to use our memory interposition
setup to break the confidentiality of the PCE enclave, ex-
tracting its Provisioning Certification Key (PCK). With a
PCK from a machine in a fully trusted UpToDate status in
hand, we are able to to sign our own attestation keys which
do not originate from an Intel-signed QE. This in turn allows
us to sign arbitrary SGX or TDX reports without any TEE
protections, thereby completely breaking SGX and TDX
security guarantees. To the best of our knowledge, this is
the first end-to-end provisioning certification key extraction
attack on a TDX system in a fully trusted UpToDate status.
Breaking TEE Confidentiality and Integrity. Having
utilized our attack to subvert attestation, we now proceed to
examine the confidentiality and integrity guarantees of real-
world applications relying on SGX and TDX. We notice a
clear gap in threat model. More specifically, while server
TEEs are designed to run in data centers (and thus rely on
the operator for physical security) [1, 2], many applications
use TEEs with the explicit goal to avoid operator trust
shifting it instead to the underlying hardware.

We first investigate BUILDERNET, a part of the Ethereum
blockchain ecosystem that uses TDX to provide integrity,
confidentiality, and trustworthiness for block builders and
users, processing millions of dollars in value each month.
We break these guarantees, demonstrating how a malicious
operator could both extract configuration secrets and gain
the ability to frontrun (and profit) without being detected.
NVIDIA Confidential Computing. Using our subverted
TDX attestation process, we investigate Phala Network’s
DSTACK, an SDK for deploying docker containers into
TDX. At a high level, DSTACK aims to extend the pro-
tections of TDX to docker containers with minimal code
changes, easing deployment. We are able to break TDX’s
guarantees for all applications relying on DSTACK. Notably,
we show that we are able to use an NVIDIA Confidential
Computing attestation from a different computer as if it
were our own. We then break two applications relying on
DSTACK, a tool for hosting Jupyter notebooks and an LLM
frontend that attests to running in TDX, allowing us to pass
NVIDIA Confidential Computing attestation while running
the workload without any TEE protections.

Targeted Data Extraction Beyond Attestation.  Hav-
ing explored the implications of PCK extraction, we now
proceed to demonstrate that even securing the system’s
PCE and QE is insufficient for mitigating bus interposition
attacks. To that aim, we examine SECRET, one of the first
privacy-preserving smart contract systems and wide-spread
production deployments of SGX, featuring a $57M USD



market cap. To ensure the confidentiality of contract data

and execution, SECRET relies on a single master key which

is shared among all validator nodes and stored in an enclave.

While it would be possible to utilize our already-extracted

PCK to falsely attest an attacker, we instead elect to use

our memory interposition setup to directly extract a node’s

SECRET-specific ECDH private key from the SECRET en-

clave. This allows us to obtain the network’s master key

directly, thereby completely breaching SECRET’s confiden-
tiality guarantees, without attacking the system’s quoting
enclave or needing the machine’s provisioning key.

Attacking AMD SEV with Ciphertext Hiding. Going

beyond Intel’s SGX and TDX, we also investigate AMD’s

SEV-SNP implementation. Here, in an effort to mitigate

prior software-based ciphertext attacks [7], SEV-SNP VMs

running on EPYC processors based on the Zen 5 microar-
chitecture support Ciphertext Hiding [6], which aims to
hide the VM’s encrypted state from malicious hypervisors.

However, as this does not protect against attackers with

physical bus access, we re-enable ciphertext attacks on these

machines by demonstrating the extraction of signing keys
from OpenSSL’s constant-time ECDSA implementation.

Summary of Contributions. We contribute the following:

o We build a low budget DDRS interposition setup capable
of observing DRAM bus transactions (Section 4).

« We demonstrate how to achieve control over TEE execu-
tion, allowing us to observe virtual addresses of interest
using our memory interposer (Section 5).

e« We breach TDX’s and SGX’s security guarantees by
extracting a Provisioning Certification Key (PCK) from
a Xeon server in a fully trusted status (Section 6).

o Using our PCK we breach BUILDERNET’s use of TDX,
violating its confidentiality and integrity (Section 7).

o« We break TDX and GPU attestation, running CPU and
GPU workloads outside of TEE protections (Section 8).

« We demonstrate that even protecting the system’s PCE
and QE is not sufficient by breaching the SECRET network
through a targeted ECDH key extraction (Section 9).

o We extract signing keys from OpenSSL’s ECDSA imple-
mentation running inside a VM protected by AMD SEV-
SNP with ciphertext hiding enabled (Section 10).

1.2. Responsible Disclosure and Ethics

Following the practice of coordinated vulnerability dis-
closure, we shared our findings with Intel in April 2025,
AMD in August 2025, NVIDIA in June 2025, as well as
with the security teams of the affected deployments over the
May to July 2025 timeframe. Intel, AMD, NVIDIA, and all
affected deployments have acknowledged our findings, and
are considering releasing statements simultaneously with the
public release of this paper. The affected deployments are
currently working on mitigations as well as adapting their
threat models in response to our attack.

All attacks discussed were performed on our own com-
puters either using local testnet setups or the official project
testnets designated for such activities. Any data involved
was our own, created specifically for these purposes.

2. Background and Related Work

2.1. Intel’s Trusted Execution Environments

In this section we provide background regarding Intel’s

TEE implementations, namely SGX and TDX.
Intel Software Guard eXtensions (SGX). Intel’s Software
Guard eXtensions (SGX) introduces x86_ 64 instructions to
create trusted execution environments, called enclaves, that
support secure code execution. Intel SGX aims to shield
the code and data within enclaves from both inspection and
modification, even in the presence of root-level adversaries
with full control over the system’s software stack. Further-
more, SGX employs an attestation process, allowing remote
parties to ensure that enclaves are running on genuine trust-
worthy Intel hardware. To identify enclaves, SGX maintains
a measurement of the enclave’s initial state (MRENCLAVE)
and the enclave developer’s identity (MRSIGNER).

At boot time, the CPU reserves a region of memory
known as Processor Reserved Memory for exclusive use by
Intel SGX, isolating it from all untrusted code. The reserved
pages are initially unallocated and stored in the Enclave Page
Cache (EPC), a list of free pages maintained by the untrusted
kernel. When an enclave is loaded, the kernel allocates pages
from the EPC, and initializes them with code and data.
Upon initialization, the kernel marks the pages as ready for
execution. Once initialized they cannot be read or written
by the kernel, even in the event of swapping, as the kernel
can only read or write pages upon CPU encryption [8].
Intel Trusted Domain Extensions (TDX). To widen
adoption of confidential computing, Intel released Trusted
Domain Extensions (TDX) in 2021, which extends confi-
dentiality and authenticity guarantees to complete virtual
machines (called trust domains, or TDs) [9]. Like SGX
protects enclave memory, TDX protects the virtual machine
state from the hypervisor. However, TDs do not require the
engineering effort of SGX enclaves, as they behave like
normal virtual machines with their own secure guest phys-
ical address space. To support loading confidential VMs,
Intel added Secure Arbitration Mode (SEAM) to the CPU
to load trusted Intel-signed virtual machine management
software known as the TDX module [10]. Also similarly to
SGX, TDX provides measurements for identifying a running
TD. The MRTD measures the TD’s initial state, and RTMR
measurements measure runtime state of the TD.

Trusted Compute Base (TCB). For SGX to operate
securely, the SGX TCB consists of the trusted components
that must operate correctly, and may not be compromised or
malicious. Among these are the CPU itself, its microcode,
and the CPU’s root keys. In terms of software, SGX relies on
the correctness of Intel’s Provisioning and Quoting enclaves,
which handle the machine’s Provisioning Certificate Key
(PCK) and attestation keys. Other system components, such
as the BIOS, machine’s DRAM or even the DIMM modules
themselves, remain untrusted, thus they are not part of the
TCB. The TDX TCB includes the SGX TCB in addition to
Intel’s SEAM loader and TDX Module software.



Memory Encryption. To harden against physical memory
attacks, such as cold boot attacks, Intel SGX on Xeon
Scalable platforms employs a memory encryption engine
called Intel Total Memory Encryption (TME) [11]. More
specifically, the DRAM controllers implement TME, en-
crypting the entire address space using AES-XTS with a key
determined at boot time. Rather than writing plaintexts, Intel
TME writes ciphertexts to memory at a 128-bit granularity.
In addition, TME’s AES-XTS implementation includes a
tweak function to incorporate the physical address to ensure
that data written to different physical addresses produces
different ciphertexts. TDX further extends the memory pro-
tection model of SGX to multiple tenants by giving TDs
separate unique ephemeral encryption keys for AES-XTS
encryption. Furthermore, integrity protection utilizing SHA-
3 based MAC:s is optionally available for TD memory [12].
Attestation. A key feature of both SGX and TDX is remote
attestation. This allows a TEE to prove to a remote verifying
party that it is indeed running on trustworthy and genuine
Intel hardware, guaranteeing its confidentiality and integrity.
Subsequently, this allows the remote party to provision the
TEE with secrets, with the assurance that these secrets can
never leave. In this paper we focus in particular on Intel Data
Center Attestation Primitives (DCAP), the remote attestation
process used by Intel’s Xeon Scalable platforms, which is
used by both SGX and TDX. See Section 6.2 for a more
in-depth overview and Appendix Bfor extended details.

2.2. Attacks on TEEs

SGX. While micro-architectural data sampling attacks
(MDS) [13, 14, 15] exfiltrate data from enclaves, Fore-
shadow, CacheOut and AEPICLeak [16, 17, 18] extract
SGX attestation keys. Crosstalk [19] shows how to extract
ECDSA nonces and recover ECDSA keys from an SGX
enclave using IPP crypto’s ECDSA implementation. Fur-
thermore, SGX.Fail [20] provides an overview of various
SGX attackers and how these affect real-world applications.
TDX. While TDX hardens against single-stepping attacks,
TDXdown [21] demonstrates that this prevention mode can
be sidestepped to re-enable single-stepping. Despite TD state
being isolated from the hypervisor, Heckler [22] leverages
the hypervisor’s control over interrupts to modify TD regis-
ters and control flow, demonstrating authentication bypasses
in OpenSSL and sudo executing within a TD.

AMD SEV. Like with TDX, Heckler [22] demonstrates the
same malicious interrupts can achieve similar register modi-
fication and control flow primitives against SEV. WeSee [23]
further shows how the AMD-specific #VC exception can
be used to skip instructions and modify the rax register,
building an arbitrary VM memory read primitive.

AMD SEV uses a similar 128-bit AES-XEX memory
encryption, but unlike SGX does not prevent the hypervisor
from reading enclave ciphertexts through memory accesses.
Cipherleaks [24] exploits this by observing ciphertexts to the
corresponding VM Save Area (VMSA) to break OpenSSL’s
constant-time ECDSA and RSA implementations in AMD

SEV-SNP. Next, rather than just the VMSA, [25] demon-
strates that this applies to all memory pages. Finally, Ci-
pherSteal [26] and HyperTheft [27] exploit ciphertext side
channels to recover input data and weights from TEE-
shielded neural networks respectively.

Hardware Attacks. DRAMA shows that attackers can
infer whether the victim accessed the same row by ob-
serving DRAM access latency [28]. Targeting Intel DCAP’s
predecessor, Membuster [29] uses a professional $170,000
memory interposition setup to extract fine-grained memory
access patterns of enclaves. However, the cryptographic
hardening prevents Membuster from fully breaching SGX
and recovering the attestation key. WireTap and Batter-
ingRAM [3, 4] recently extended this result to DDR4-based
servers running SGX and SEV, exploiting deterministic en-
cryption in order to break TEE security guarantees. Next,
Buhren et al. [30] glitch the voltage of the AMD-SP to
execute custom SEV firmware, allowing the decryption of
VM memory as well as extraction of endorsement keys.
Finally, VoltPillager [31] breaches the confidentiality and
integrity of SGX enclaves by controlling the CPU core
voltage to inject faults.

2.3. The Memory System

Computer memory is organized in a hierarchy, with
caches providing smaller low-latency storage, to dynamic
random access memory (DRAM) chips providing large
amounts of high-latency storage. We now discuss the struc-
ture of caches, physical memory, and memory management.
Cache Organization. As most programs access the same
memory locations repeatedly, CPUs cache memory data to
decrease latency. Memory is cached in units of cache lines.
These cache lines are stored in multiple buffers increasingly
further from the CPU in order of the per-core Level 1 (L1)
and Level 2 (L2) cache, and system-wide Last Level Cache
(LLC). Cache lines are stored until the cache fills and must
evict a cache line. When a program tries to access memory
for reading or writing, the processor first checks if the cache
line is present in any cache and does not issue a command
to the underlying DRAM unless needed. In modern Intel
desktop processors, cache lines are 64 bytes wide [10].

Memory Organization. As of DDRS, a single DIMM
contains separate two channels, each of which also contain
multiple DRAM chips. DRAM chips are first identified by
their rank. Ranks are further broken up into bank groups
and individual banks. Finally, the row and column address
determine the placement of the memory within the bank.

DDRS5 Bus Overview. The DDRS specification for DIMM
was released in 2020. All CPUs supporting Intel TDX utilize
server-grade registered DDRS memory (e.g., RDIMMs) as
of the time of writing. A registered DDRS5 DIMM contains
288 pins, split into two independent channels, which operate
separately and concurrently. Each channel has 40 pins for
data, 8 of which are allocated to error correction code
(ECC) bits. 7 pins in each channel are also allocated for
command and address (CA) usages, but the interpretation



of each pin depends on the command. DDRS CA and data
are furthermore encoded as a falling and rising edge pair,
meaning each cycle transmits 80 data bits and 14 CA bits.

To read memory from a DIMM, the memory controller
first determines which channel to read from, then issues
a two-cycle row activation command. The activation com-
mand encodes a 17-bit row address, 3-bit chip ID (rank),
and 5 bits for the bank group and address on the CA pins.
After the activation delay, a two-cycle read command can be
sent containing the same chip ID, bank group, and address,
plus a 9-bit column address all encoded in CA pins. After
the read latency, the DIMM returns the data as a 16-burst
of 32 data pins, totaling to 64 bytes per transaction.

Physical and Virtual Addressing. The physical address
is an integer that uniquely determines the rank, bank, row,
and column where memory is located. The CPU’s memory
controller is responsible for decoding a physical address to
its individual DRAM components.

To isolate multiple applications running on the same
physical memory, modern CPUs and operating systems sup-
port virtual addressing. When a program requests memory,
the requested virtual address is translated to a physical
address, which determines the actual location of the mem-
ory. Similarly, TDs support guest-physical addresses, which
appear like a physical address to the guest operating systems
and can be mapped to guest-virtual addresses, but go through
a second translation to host-physical addresses [9].

3. Threat Model and Target Setup

We assume an attacker with physical and root-level
access to the target machine. For physical access, we assume
adversarial capabilities of an electronics hobbyist, capable
of simple electrical assembly operations (i.e., soldering)
as well as installing components into the target machine.
However, we note that our attacks do not require more
advanced capabilities such as PCB circuit editing, or chip-
level inspections using electron microscopes.

For software access, we assume a root-level adversary,
capable of performing arbitrary configurations to the target.
This includes modifying settings, installing a custom kernel
and drivers, as well as adversarially manipulating the target’s
userspace setup and memory mappings.

Target Machine. We targeted a server with an Intel
Xeon Silver 4509Y processor installed on a Supermicro
XI13SEI-F motherboard, running BIOS version 2.5a with
CPU microcode version 0x2b000639. The machine has eight
16 GB registered DIMMs (RDIMMs) of DDRS5 memory,
capable of 4800 MT/s. For software, our target machine runs
a custom Linux kernel based on version 6.8.2 with Intel and
Canonical’s TDX patches for Ubuntu 24.04 [32], and uses
Intel SGX and TDX libraries version 2.25 with a DCAP
library version 1.22. Querying Intel’s PCS service resulted
in our machine obtaining an UpToDate status, meaning
Intel considers our machine to be in a fully trusted status,
not susceptible to any known TDX or SGX vulnerabilities.

4. Observing Memory Bus Traffic

4.1. Interposer Construction

To observe the DDR5 memory bus, we first need to
construct a custom interposition probe. While prior work [3,
4] demonstrates similar setups for DDR4 systems, in this
section we extend these to DDR5-based devices.

Step 1: Slowing Down Bus Speeds. The cost of acquisition
equipment is highly dependent on the speeds of the signals
being interposed. Thus, our first step is to slow down the
speed of the system’s memory bus, allowing us to simplify
our interposition setup. To that aim, while our DIMMs can
support a speed of 4800 MT/s (i.e., 2.4 GHz clock), we
set the memory speed in our system BIOS to the lowest
supported level of 3200 MT/s (1.6 GHz clock). We were
also able to lower the memory speed of a single DDR5
RDIMM to 3200 MT/s via modifying its SPD data, which
automatically drops all other DIMMs to this lower speed
upon its insertion. Finally, we notice that both SGX and
TDX consider the machine’s memory speed to be outside
the TCB, meaning this setting does not affect the machine’s
UpToDate attestation status.

Step 2: Obtaining Access to Memory Bus Traces. With
the machine’s bus speed set to its lowest supported setting,
our next step is to obtain a convenient physical access
to traces of the machine’s memory bus. To that aim, we
use a DDRS5 RDIMM riser ($12), which is a simple PCB
containing a female and male DIMM connector, designed to
act as a pass through between the DIMM and motherboard.
See Figure 2 (left). Most importantly, the riser board allows
for easy access to the traces of the machine’s memory bus,
avoiding the need for motherboard or DIMM modifications.

\/interposer
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Figure 2: DDRS RDIMM riser board and probe isolation network schematic

Step 3: A Probe Isolation Network. With the machine’s
memory bus traces accessible, it is tempting to connect these
directly to the logic analyzer inputs via wires. However,
we empirically observed that this places significant electri-
cal loads on the CPU’s memory circuitry, preventing the
machine from booting due to RAM recognition errors. To
reduce the electrical load on the machine’s RAM circuitry
we disassemble and reference a Keysight SoftTouch probe,
intended for high frequency buses. We note that these probes
use a three component isolation network, consisting of a
resistor, capacitor and inductor. See Figure 2 (right).

Step 4: Locating Interposer Parts. While high frequency
components are typically expensive, a particularly useful
source of parts is Keysight (formerly known as Agilent)
N4252A Transition Probe Adapters, which are available
on a second hand marketplace for around $40 at the time



of purchase. Inspecting the N4252A’s PCB, it appears to
contain 102 channels, all outfitted with the probe isolation
network from Figure 2 (right). While we were unable to find
a datasheet for the N4252A, marking on our unit suggests
it was used for the QuickPath Interconnect protocol, which
was used by Intel between 2008 and 2017 [33, 34].

Step 5: Interposer Construction.  Thus, to build our
DDRS5 RDIMM interposer, we heated up the N4252A’s PCB
with an air gun, and manually collected the stacked pairs of
capacitors and resistors using tweezers. Next, we used a
soldering iron to manually place the capacitor and resistor
pairs on traces corresponding to Channel A on the DDRS5
RDIMM slot protector. This resulted in us successfully iso-
lating the logic analyzer from the target machine, allowing
it to reliably boot without memory issues. See Figure 3.

Figure 3: (left) Zoomed-in view on the probe isolation networks. (right)
DDRS5 RDIMM interposer and logic analyzer connecting pods.

Next, to connect the other side of the probe isolation

network to the logic analyzer, we used a Keysight N4834
SoftTouch probe ($22, secondhand) cutting off its bottom
SoftTouch connector. We then soldered the wires coming
from the probe’s four 90-pin pods (which also contain the
inductor) directly to the capacitor-resistor pairs placed on
the slot protector’s PCB. Overall, this resulted in a reliable
memory interposition setup requiring an amount of skill akin
to a computer technician, without adverse effects on the
target machine. Moreover, as we used standard Keysight 90-
pin connectors, it is possible to use our probe with a large
variety of Keysight equipment.
Step 6: Logic Analyzer Setup. Having constructed our
DDRS5 RDIMM interposition probe, we now describe our
choice of Keysight logic analyzer. Recalling our ability to
slow the system’s memory clock to 3200 MT/s (1.6 GHz
clock), we used two Agilent 16962A acquisition cards ca-
pable of acquisition of 1.6 GHz signals and featuring 64MB
of DDR2 RAM ($110 each, secondhand). We then placed
the cards inside a Keysight 16902A logic analyzer chassis
($550, secondhand), upgrading its internal computer from a
Pentium III-based CPU to a Lenovo ThinkCentre M920Q
MFF i5-8500T ($150, secondhand). Finally, we installed
Agilent’s Logic and Protocol Analyzer application version
5.9, the latest supporting this hardware. See Figure 1.

4.2. Observing Bus Transactions

Now that we have built an interposer and connected it to
a logic analyzer, we are able to observe bus transactions. See
Figure 4. First, a row activation is sent containing the row

address, bank address, and bank group. Some time later, a
read is issued with the same bank address and group, along
with the column address. Finally, after the read delay, the
read data of a full burst is observed in the data lines.
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Figure 4: (top) A read command on the logic analyzer in the Waveform
view. (bottom) A read command on the logic analyzer in the Listing view.

5. Controlling Enclave Memory and Execution

To enable SGX and TDX on scalable Xeon servers, Intel
requires the first slot of each memory controller channel
to be populated [35]. Overall, this results in our machine
having eight 16GB DDR5 RDIMMs, each supporting two
independent channels (e.g., 16 channels total). With our
interposer only able to observe bus transactions on a single
channel of the machine’s memory, we now outline our
techniques for ensuring that encrypted data present in virtual
addresses of interest will be visible using our interposer.

5.1. Obtaining Physical Address Mappings

Before forcing the data present in the virtual addresses
of interest to be present on the single memory channel
observable using our interposer, we must first recover the
mappings between the system’s physical address space and
the corresponding locations on the machine DIMMs. While
prior work has relied on row buffer conflicts [28, 36] to re-
cover this information, we find that this side channel is much
noisier on DDRS systems. Beyond noise, it is much harder
to induce the row buffer conflicts on our target machine,
presumably due to the increasingly complex addressing
functions used for the case of a fully populated eight-DIMM
system. Instead, we discover that Intel exposes an address
decoding interface, and utilize a simple algorithm to recover
the actual mapping functions from decoded components.

More specifically, we find that Intel exposes an inter-
face for physical address to component translation known
as the Memory Address Translation (ADXL) [37] to the
Linux kernel [38, 39]. We then further expose this decoding



interface to userspace via sysfs, allowing us to obtain for
each physical address its corresponding memory controller
ID, channel ID, bank group and address and row address,
which determine the physical addresses’ DIMM location.

Next, we recover the actual mapping functions from
physical addresses to DIMM locations used by our target
machine. To that aim, we start with a known valid physical
address addr and trigger a decoding of this address using
the above primitive, obtaining its location on the machine’s
DIMMs. Then, for each pair of address bits (ig,%1) we flip
the ¢gth and 7;th bits inside addr and decode the resulting
new addresses, recording the results. Once we obtain which
address bits affect what part of the DRAM address, we use
Gaussian elimination to determine which bits form a linear
function (in other words, whether the output bit is the result
of XORing all input bits together).

If the resulting system of linear equations is found to be
inconsistent for an output bit, we directly construct a truth
table for this output bit by decoding addresses corresponding
to all possible combinations of input address bits. Then, we
minimize this truth table, obtaining logical functions for the
remaining non-linear output bits.
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Figure 5: Example recovered mapping functions.

5.2. Controlling SGX Page Allocation

Having recovered the machine’s mapping from physical
addresses to DIMM locations, our next step is to ensure that
virtual addresses of interest from SGX’s enclave page cache
(EPC) are visible to our interposer. As SGX relies on the OS
kernel for physical memory allocation, we must modify the
kernel to allocate pages to the specific DIMM channels we
can observe. To that aim, we modify the kernel’s SGX driver
to accept a virtual and physical address pair as a parameter
to be stored in global kernel memory. Each pair is a desired
mapping: a virtual address to be pinned to the corresponding
physical address. Next, when an enclave is to be initialized
and the kernel attempts to allocate memory, we check if the
virtual address corresponds to a pinned virtual address. If
the virtual address does not correspond to a pinned address,
the modified SGX driver returns the first page that is not a
target physical address. However, in case the virtual address
is a pinned address, we search through desired mappings
passed to the kernel earlier, and ensure that the virtual
address is allocated to the mapping’s corresponding physical
address. Overall, this allows us to precisely place virtual
addresses of interest on desired physical addresses, which

in turn correspond to DIMM locations observable via our
interposer.

5.3. Controlling SGX Enclave Execution

Having obtained the ability to pin virtual addresses of
interest to our desired DIMM locations, our next step is to
control the enclave’s execution in a way which allows us to
synchronize data collection with our logic analyzer. To that
aim, we use two primitives, which we now describe.
Enclave Control Channel. To arm the trigger on our
logic analyzer in preparation for acquisition, we first need
the capability to suspend enclave execution at specific points
of interest. As SGX does not allow even root-level users
to set breakpoints inside an enclave memory in production
status, we instead resort to controlled-channel attacks [40]
to control the execution flow of production enclaves.

More specifically, we start by ptrace-ing our target

program and wait until the enclave pages are initialized. We
then modify the permission of the code page where we wish
to interrupt execution, disallowing reads and writes. When
the target enclave attempts to execute this code page, our
tracer will be notified and can restore the page’s permissions.
Simultaneously, we program our logic analyzer to acquire
data for an address of interest as we know what code path
the enclave is currently executing. This allows us to trace
through the execution of an enclave, interrupting whenever
we wish to utilize our interposer. We note that this is par-
ticularly effective for interrupting function call boundaries,
as the enclave often jumps to a separate code page.
Cache Thrashing. Next, we note that the CPU caches
by their very nature are designed to mask memory access
latency by removing the need for repeated DIMM accesses
to the same address. Unfortunately, this has the effect of con-
taining data read and write operations within the CPU, thus
making them invisible to our memory interposition setup.
As SGX does not allow us to flush enclave memory nor
individually mark pages uncachable', we overcome caching
with a cache thrashing technique which we now describe.

First, we allocate a large region of memory (four times
the size of the LLC) and fill the contents with random data.
Then, we move our program to a sibling core of the enclave,
ensuring that the program shares all caches with the victim
enclave. Finally, we repeatedly access our large memory
space in sequential order. As more data is accessed than the
size of all caches, they are forced to constantly evict all of
their contents to cache new data. This allows us to trigger
the logic analyzer as soon as the enclave variable of interest
is read from the machine’s memory by the target enclave.

6. Attacking Intel TEE Attestation

As outlined in Section 2.1, TEE implementations present
on Intel Xeon Scalable server platforms use TME for en-
crypting the machine’s memory, which in turn relies on
deterministic AES-XTS with boot-time generated keys [12].

1. Possibly to avoid TLB poisoning attacks as described by Li et al. [41]



In this section we empirically verify the presence of this
deterministic encryption, and utilize our memory interposer
to recover a critical ECDSA signing key in the attestation
chain. Finally, we show how this signing key can be used
to forge arbitrary SGX and TDX quotes, resulting in a
complete breach of the SGX and TDX ecosystems.

6.1. Verifying Deterministic Encryption

We begin by verifying that the encrypted ciphertext we
observe on our memory interposer is a deterministic function
of the physical address of memory and its contents.
Observing Determinism. We begin by creating an SGX
enclave that writes and reads a specific virtual address
repeatedly. To check that encryption is deterministic, we
instruct our enclave to perform a series of write and read
operations to a fixed virtual address in enclave memory,
capturing the ciphertext read data after each step using
our logic analyzer. Listing 1 is a simplified outline of our
enclave, where we first write and read a fixed value 0x00,
then OxFF, and finally the initial value 0x00 again.

void ecall_experiment () {
memset (global_memory, 0x00, burst_size);
uncached_read (global_memory) ;
wait_for_logic_analyzer_collection();

memset (global_memory, OxFF, burst_size);
uncached_read (global_memory) ;
wait_for_logic_analyzer_collection();

10 memset (global_memory, 0x00, burst_size);
11 uncached_read (global_memory) ;
12 wait_for_logic_analyzer_collection();

Listing 1: SGX Enclave function for writing then reading a cache line.

Finally, we observe that the ciphertexts corresponding
to the first and third read are identical, while the ciphertext
corresponding to the second read is different. See Figure 6.
Impact of Virtual and Physical Addresses. Next, we
check that the virtual address of memory does not affect
the ciphertext. To that aim, we run our enclave at a different
virtual address, but pin the new virtual address to the same
physical address as in the first test. We observe that writing
a fixed value of OxFF produces an identical ciphertext to
that observed earlier. To check the impact of the physical ad-
dress, we execute the enclave at the original virtual address
but pin it to a different observable physical address. We find
the encrypted memory contents are different, confirming the
physical address affects the ciphertext.

Impact of SGX Enclave Measurements. Finally, as
our platform supports multi-key TME, we verify that the
measurements of an SGX enclave do not affect its AES-
XTS key. To that aim, we modify the code of our enclave
without changing the functionality and resign it with a
different developer identity. This ensures that the enclave’s
MRSIGNER and MRENCLAVE are changed. We pin the new
enclave to our chosen physical address, and observe writing

NKADDR ROW(0-3 ROW4-17

Figure 6: Ciphertext from three reads of enclave data. The first and last
reads contain the same plaintext, while the second is different.

the same plaintext to this physical address has an identical
ciphertext to our original enclave. Thus, we confirm that
all SGX enclaves running on our system share the same
memory encryption key and individual TME-MK keys are
only applied to TDX TDs.

6.2. Secure Attestation Overview

We now give a high-level overview of the secure attesta-
tion process. For the interested reader, we provide extended
details of the attestation process in Appendix B. The at-
testation mechanism is composed of two parts: (1) local
attestation, where an SGX enclave or TD proves its own
identity to the corresponding SGX/TDX Quoting Enclave
(QE) and (2) remote attestation, where the QE uses this data
to produce and sign an SGX/TDX quote, which is used to
authenticate the proving enclave or TD to remote parties.
Local Attestation. Before an enclave or TD can prove (or
attest) to a remote verifier, it must first prove its own identity
to the Quoting Enclave (QE) through local attestation. First,
the prover generates a report containing its measurements
and optional provider-defined data. For an SGX enclave,
the EREPORT instruction generates a report containing the
enclave’s MRENCLAVE and MRSIGNER values. TDs use the
SEAMREPORT instruction to generate a report containing
the TD’s MRTD and RTMR, TDX module measurements, and
version plus security state of the SEAM code. This report
is verifiable with the EVERIFYREPORT instruction.
Remote Attestation. To create a remotely verifiable quote,
the prover first passes its report to the corresponding QE.
The QE verifies the report and uses it to produce and sign
a quote, which is used to authenticate the proving enclave
to remote parties. Intel’s QE derives the repeatable signing
key (its attestation key) using EGETKEY on a sealing key.
Provisioning Certificates. To prevent arbitrary key pairs
from being used to sign and verify quotes, the QE provides



its attestation public key and measurements to Intel’s PCE.
The PCE derives a device-specific provisioning certification
key (PCK) via EGETKEY on a root provisioning key and
CPU version info. This PCK is a 256-bit ECDSA key and
is used to certify the QE’s identity and its attestation key.
Unlike the memory encryption keys in Section 2.1, the
PCK does not rotate on boot. In addition, Intel publishes
certificates and certificate revocation lists for the PCKs in
all genuine Intel platforms, ensuring a complete signature
chain from DCAP quotes to Intel’s Certificate Authority.
By following this certificate chain, the remote verifier can
ensures a quote originates from a genuine Intel platform.

6.3. Attacking Secure Attestation

We focus on the provisioning certification key (PCK)

described above and notice that it is used to produce ECDSA
signatures on both the SGX and TDX QE’s attestation
keys. Thus, extracting the PCK from the machine’s PCE
is sufficient to compromise SGX’s and TDX’s attestation
process, allowing us to certify arbitrary attestation keys
and subsequently forge remotely verifiable quotes, thereby
compromising Intel’s TEE guarantees.
Elliptic-Curve Digital Signature Algorithm (ECDSA).
To sign and verify digital signatures, Intel’s DCAP attes-
tation uses ECDSA over the curve p-256 [42]. Given a
group generator G for an additive group of order n over
p-256, key generation is done by picking a random integer
d < n for the private key, and computing the public key
Q@ = [d]G using a scalar by point multiplication operation
over p-256. Next, to sign a message m, the message is
first hashed into log,(n) bits, resulting in an integer z. The
signer then picks a random nonce £ < m and computes
(x,y) = [k]G, r = z mod n, and s = k=1 (z+7-d) mod n,
outputting (r,s) as the signature for m. To verify a sig-
nature, the verifier first computes the hash z from m,
uw=z-s""modnand v = r-s~! mod n. Next, the verifier
computes (z',y’) = [u]G + [v]Q and finally checks r = a’.
Scalar-Point Multiplication. To implement ECDSA, the
PCE uses a custom cryptographic library called Intel In-
tegrated Performance Primitives Cryptography (IPPCrypto)
[43]. Algorithm 1 shows simplified pseudocode for the
scalar-by-point multiplication function used for ECDSA
signing operations. The inputs are a windowed and Booth
encoded scalar value k£ and point P, and the output is
another point R = [k] P. We emphasize that all table lookups
and point additions are performed in constant time and do
not leak information via memory access patterns.

To perform a scalar by point multiplication, Algorithm 1
first initializes a precomputation table 7', such that T[i] =
[i]-G forall i = 0,-- - , 16, whose contents does not depend
on the scalar k (Lines 1-5). The output point R is initialized
by looking up T'[k,,], the most significant digit of & (Line 6).
For each remaining digit k;, Algorithm 1 multiplies R by 2°
to account for moving to the next digit and then updates H
to be the output of looking up |k;| in the table T, negating H
if necessary based on the sign of k; (Line 9). Next, H (which
is now equal to [k;]G) is added to R (Line 10), allowing

Algorithm 1 Simplified pseudocode of scalar-point multi-
plication algorithm in Intel’s IPPCrypto library.

Require: A scalar k with Booth encoded digits ko - - - k, valued
—16 < s; < 16 and a elliptic curve point G
Ensure: R = k]G

I: T[0]=0

2 TN =G

3: for i =2 to 16 do

4 TH =Tli-1]+G

5: R = Tl[kn] > done in constant-time
6: fori=n—1to 0do

7: R=2°R > using 5 point doubling operations
8: H =T[|ki]] > done in constant-time
9: if £, <0 then H = —H > done in constant-time
10: R=R+H

11: return R

the algorithm to proceed with handling the next digit of k.
Finally, once all the Booth encoded digits of k£ have been
processed, Algorithm 1 returns R = [k]G (Line 11).

6.4. PCK Key Extraction

As the nonce k for an ECDSA signature can be used to
recover the private key d with straightforward algebra, we
now recover k from a PCE signing operation and thus the
PCK itself. Observing Algorithm 1, we note the variable
H in Line 9 contains an elliptic curve point that is the
result of a table lookup which directly depends on k;. As
the precomputation table 7' only contains 16 entries, there
are only 32 possible values of H. Finally, we note that the
set possible values of T, and therefore H, is public and does
not depend on the value of the nonce k.

Creating a Ciphertext Mapping. To extract k, we con-
struct an SGX enclave that simply writes known plaintext to
a target virtual address, which we pin to a physical address
addr observable with our interposer. Next, having ascer-
tained in Section 6.1 that all SGX enclaves in our system
share the same TME key, we write and read back each
possible value of H one by one, collecting corresponding
ciphertext samples. We then create a direct mapping from
each observed ciphertext to its corresponding plaintext value
of H as well to its corresponding k;. This mapping is valid
until the encryption keys change after a reboot.

Recovering k.  With our control over enclave execution
from Section 5.3, we execute the PCE and trigger a QE
report certification which in turn triggers the PCE to perform
an ECDSA signature on the QE’s attestation keys. During
the signing operation, we pin the physical address of H
to a fixed addr, allowing us to observe the (encrypted)
values of H using our interposer. Next, we use our enclave
control channel from Section 5.3 to pause the execution at
each loop iteration at Line 6 of Algorithm 1, arm the logic
analyzer to trigger on memory accesses to addr, and record
the data returned on the next read of H in Line 10. Once
we recover all ciphertexts of H, we use our mapping to
recover corresponding values of k;, allowing us to obtain
the ECDSA nonce k used by the machine’s PCE. Finally,



we also record the public signature (r, s), which is the result
of the PCE signing the QE’s attestation key.

Recovering the Machine’s PCK. Performing the above
steps on our target machine described in Section 3 in an
UpToDate attestation status, our attack took about 2 min-
utes to create the ciphertext mapping, and 13 minutes to
execute the PCE and trace the ECDSA signing. With the
ECDSA signature (r,s) and the corresponding nonce % in
hand, we are able to recover the PCK from the machine’s
PCE, matching its corresponding public key to the Intel-
signed certificate for our target machine.

Forging SGX and TDX Quotes. With the machine’s PCK
in hand, we recall from Section 6.2 that the PCK is used
by the Provisioning Certification Enclave (PCE) to sign the
quoting enclave (QE)’s attestation key. Thus, using the PCK
we are able to sign our own attestation keys which do not
originate from an Intel-signed QE. This in turn allows us to
sign arbitrary SGX or TDX reports, creating fully verifiable
attestation chains without actually running TDX virtual ma-
chines or SGX enclaves under any TEE protections, thereby
completely breaking SGX and TDX security guarantees. We
confirmed that the reports signed with our extracted PCK are
fully verifiable by Intel’s DCAP Quote Verification Library
[44]. To the best of our knowledge, this is the first end-to-
end complete breach of TDX protections on a machine in a
fully trusted UpToDate status.

7. Attacking BuilderNet

Using our ability to forge TDX and SGX attestations,
we now look at real-world applications relying on SGX
and TDX. We first investigate BUILDERNET, a part of the
Ethereum blockchain ecosystem utilizing TDX to provide
guarantees of integrity, confidentiality, and trustworthiness.
We run BUILDERNET software outside of TDX while still
providing valid attestation, breaking these security guaran-
tees, and demonstrate how a malicious operator could both
extract configuration secrets and gain the ability to build
arbitrary blocks or frontrun without being detected.

7.1. BuilderNet Overview

BUILDERNET is a network of block builder operators
for Ethereum, a decentralized smart contract ecosystem. In
Ethereum, transactions are committed in blocks, i.e., batches
of transactions with a fixed maximum size. Every twelve
seconds, a random Ethereum validator node is chosen to
construct the contents of the next block, which is then
validated by the other nodes [45]. The constructor decides
not only the transactions to include but also their order-
ing, all of which affect the maximum extractable value
(MEV) claimable by the validator [46], that is, the most
value they can extract from a given block by including/ex-
cluding/reordering transactions. In order to maximize their
MEV reward, many validators run middleware known as
MEV-Boost, which allows them to source blocks from a
decentralized block building market. Blocks from the market

are built and proposed by block builders, who run algorithms
to maximize MEV and have access to wide sources of
transactions to build from [47]. BUILDERNET is one such
group of builders that contribute to the MEV-Boost market,
which end up building more than 90% of Ethereum blocks.
BUILDERNET’s builders execute in TDX TEEs in order
to provide fairness, confidentiality, and provable redistribu-
tion of MEV [48]. BUILDERNET has been operating since
November 2024, and in May 2025, built at least 19,982
blocks worth approximately $2 million in MEV. The Beaver-
build network, which built at least 68,499 blocks worth
approximately $7.5 million the same month, is in the process
of to transitioning its builders to BUILDERNET as well [49].
BUILDERNET Security Guarantees. BUILDERNET relies
on TEEs to ensures that all operators are running the correct
builder software [50]. This aims to prove that blocks are
built fairly with open, verifiable algorithms and software.
Furthermore, attestation is used to construct confidential and
attested TLS channels within builder services operating in
the TDX VM. These channels are used to share transac-
tion data and configuration secrets. With these channels,
BUILDERNET additionally provides confidentiality of trans-
actions, which is necessary to avoid frontrunning attacks
[51]. In frontrunning attacks, a malicious party gains knowl-
edge of a pending transaction and then constructs a new
transaction with higher fees to ensure theirs is executed first.
Frontrunning has a significant impact on users, undermining
both fairness and integrity of the system, as well as driving
up fees. To avoid being frontrun, users can send their trans-
actions to private pools which are only shared with trusted
parties such as BUILDERNET. In 2023, a malicious MEV-
boost validator used frontrunning to extract $25 million from
Ethereum [52], and 2021 work estimated that frontrunning
had already lead to $34 million USD in profit [53].
BUILDERNET’s Architecture. BUILDERNET consists of
individual node operators, which communicate with a cen-
tral BuilderHub service. The BuilderHub service is respon-
sible for maintaining the registry of nodes and provisioning
configuration and key information [54]. While BUILDERNET
currently requires manual approval from Flashbots to partic-
ipate as an operator, it aims to be permissionless, allowing
any entity to be a node operator if proper attestation can
be provided [48]. As a TDX virtual machine, BUILDERNET
nodes run many services that communicate internally within
the virtual machine’s network. Internal services include a
block builder, transaction pool, and Ethereum client. Exter-
nal requests are protected through the use of TLS and remote
attestation [55]. A custom proxy is used to provide attested
TLS termination for externally exposed VM ports and allow
trusted services to make attested requests [56]. We note that
the custom proxy is the only component of BUILDERNET
that directly utilizes features of TDX, and other components
do not distinguish whether they are run inside a TEE or not.
BUILDERNET Attestation. At the time of writing,
BUILDERNET only supports remote attestation for Mi-
crosoft’s Azure cloud offering of TDX [57]. To provide
a more unified attestation across OSes and TEEs, Azure
utilizes a virtual trusted platform module (TPM) for per-



forming measurements and producing quotes [58]. In TDX
attestation, Azure’s TDX quote is primarily used to au-
thenticate the TPM, and the attestation process outputs two
quotes, a TPM quote and a TDX quote. The TPM carries
its own attestation key and can produce its own quotes
following the TPM 2.0 specification. We now describe the
overarching TDX attestation flow in Azure. First, the TPM’s
attestation key is combined with other information about
the VM instance to produce runtime data. This runtime
data is hashed and provided to the TDX quote generation
service, which produces a TDX quote following the steps
in Section 6.2. This TDX quote is used to authenticate the
TPM’s public key. Next, the user’s requested report data is
combined with the TPM’s measurements and signed by the
TPM’s attestation key. In BUILDERNET, the requested report
data is a nonce provided by the remote party, to prevent
replaying of attestations. Finally, the original runtime data,
signed measurements, and an event log used to reproduce
measurements are combined and form the final TPM quote.

7.2. Attacking Private Transactions and Secrets

We now show how an attacker can utilize the ability to
forge quotes detailed in Section 6.3 to break BUILDERNET’S
security guarantees, receiving confidential transactions, ob-
taining configuration secrets, and bypassing integrity checks.

Setup. We first set up a BuilderHub instance v0.2.1 [59],
which acts as an innocent host. We initialize the instance
to only allow officially published TEE measurements cor-
responding to Azure TDX instances with the BUILDERNET
v1.4.0 image [60]. On a separate machine that does not
support TDX, we act as an attacker only running a modified
reverse proxy to perform forged attestation, based on proxy
code with version 0.1.7 at [56]. We start a local transaction
proxy and builder instance to receive blocks. As mentioned
above, these components do not distinguish whether they
are running outside of a TEE and can be deployed as-is.

Forging Azure Attestation Chains. @ We first obtain a
set of measurements and Azure TEE quotes (TPM quote
and TDX quote) from a public, trusted BUILDERNET node
provided at [50]. We modify the attested proxy code to
produce forged attestation information with the following
steps. First, we stub out code that attempts to talk to the
Azure vTPM and instead create our own RSA keypair to act
as the TPM attestation key. We directly construct the TPM
runtime data by starting with our reference data, overwriting
the embedded attestation public key. We then hash the new
runtime data, and create a forged TDX report attesting the
new runtime data. Finally, we construct a TPM quote by
re-signing the reference TPM measurements with our new
TPM attestation key, and include the TPM event log verba-
tim from our reference. We verify the constructed attestation
documents by starting a proxy server then utilizing the
attested-get CLI tool from unmodified BUILDERNET
code, which is recommended in BUILDERNET documenta-
tion [61]. We find that our documents validate and return
identical measurements to the trusted public node.

Registering and Obtaining Confidential Data. We now
utilize our forged attestation flow to register a BUILDERNET
node. We start the proxy as a client to access BuilderHub
endpoints protected by TEE attestation. First, we make
requests to register our credentials and receive transactions
from other BUILDERNET nodes [59]. Next, we retrieve
secrets and configuration information from protected end-
points, along with the list of active BUILDERNET operators.
After following these steps, a malicious node operator
now has access to secrets including a Ethereum account key,
a signing key for relay submissions, access to the block
bidding service, and information for accessing the private
transaction archive [54]. The Ethereum key is used to sign
built blocks and pay the validator, and contains $200, 000
at the time of writing [62]. The ability to see orderflow also
enables a malicious operator to frontrun private transactions,
and their ability to claim integrity allows the attacker to
maintain trust and deny malicious activity while profiting.

8. Attacking Confidential TDX VMs and GPUs

We now explore two attacks that target a software stack
reliant on TDX. More specifically, we focus on applica-
tions that build on top of DSTACK [63, 64], a software
development kit (SDK) which allows for deployment of
containerized applications to TEEs. DSTACK has already
seen adoption as a confidential virtual machine (CVM)
backend among multiple projects [65, 66, 67]. The DSTACK
SDK exposes APIs for users to deploy applications on
CVMs hosted on Intel TDX hardware. We note that in some
instances, CVM projects have hinted at being decentralized
networks themselves [68] or directly claim that upcoming
updates will allow third-parties to become external hardware
providers [69]. As such, we study a common threat model
in which a user’s application gets assigned to an attacker-
controlled DSTACK node or deployed to a fully dishonest
DSTACK cloud. We construct an attack producing outputs
equivalent to that of legitimate DSTACK API calls, effec-
tively mimicking the user’s requested (trusted) environment
outside of TDX, bypassing TEE security guarantees.

We portray this attack in two scenarios. First, we show
how modified DSTACK Python SDK calls can deceive the
user into believing their cloud provider’s Jupyter Notebook
is running on a confidential environment, when in reality
it is running outside of TDX. This allows us to view the
notebook’s contents in plain text. Then, we demonstrate
how we can use NVIDIA Confidential Computing (CC)
attestations from an independent device as if they were our
own, undermining many of the guarantees provided by CC.
Concretely, we break an LLM frontend which provides Intel
and NVIDIA attestations to prove it is running inside a trust
domain, and spin up an instance outside of TDX and CC.

8.1. DSTACK Attack Methodology

We use the ability to forge quotes detailed in Section 6.3
to build a malicious version of DSTACK’s API in which
attestation calls are intercepted and forged.



Setup. First, we initialize an innocent DSTACK instance
in TDX as a ground truth. We use this instance to obtain
baseline measurements and save them for the next steps in
our attack. Separately, we instantiate the DSTACK software
outside TDX, modifying it to produce forged attestations.

Forging TDX Attestations. As DSTACK starts, it logs
a series of events and related hashes. (e.g., a hash of the
filesystem). We use these event hashes to calculate four
RTMRs for the TDX report. Taking these RTMRs and the
previously collected baseline measurements, we compile our
TDX report and create a quote. After signing it with our
attestation key, we have a forged quote that will verify,
attesting our malicious API is an unmodified one. Since
DsSTACK is a CVM deployment platform, we continue by
breaking security guarantees of several products built on it.

8.2. Constructing Un-Confidential VMs

We first look at providers that offer Jupyter notebooks
running inside CVMs, such as PHALA NETWORK [65]. A
notebook hosted through DSTACK allows users to run con-
fidential Python workflows within an attested environment.
When a user connects directly to the notebook, they can
further verify its TEE status within the notebook’s Python
runtime by utilizing the DSTACK Python SDK [63] or
directly querying DSTACK’s RPC API [70], obtaining TDX
quotes. Both methods also allow a custom data field to be
included in the report to prevent replay attacks. After ob-
taining the quote, the user must then verify it independently.

Our attack creates a malicious API as described in
Section 8.1. To this end, quote requests to the modified
API return valid TDX quotes irrespective of the underlying
hardware. We then expose our API to the user, posing as
DsTACK’s native RPC endpoint. Since DSTACK’s Python
SDK also uses this endpoint for quotes, both direct RPC
calls and Python function calls return valid forged attesta-
tions. Lastly, we expose a regular Jupyter notebook through
the provider’s desired method, allowing users to connect to
it. After these steps, we have successfully created an envi-
ronment in which the DSTACK tools accessible to the user
return legitimate TDX quotes which pass remote attestation,
while in reality the underlying notebook runs outside of
TDX protections, with no security or privacy guarantees.

8.3. GPU Relay Attacks

Another product that builds on top of DSTACK is
PHALA NETWORK and NEAR AT’s private machine learn-
ing SDK [66, 71]. In particular, we investigate their VLLM-
PROXY, a privacy-preserving LLM frontend that attests to
running inside TDX. The attestation and its measurements
aim to ensure the frontend must be running with a specific
backend and configuration that enforces desired security re-
quirements, such as in-GPU confidentiality of user’s queries.
Securing GPU Workloads. This SDK is intended to run in
a CVM equipped with an NVIDIA Confidential Computing
(CC) enabled GPU, such as the H100 [72]. An NVIDIA CC
GPU encrypts PCle traffic, which extends the trust domain

to encompass the GPU too. To accomplish this, it provides a
hardware attestation that proves the CPU interfaces directly
with a genuine CC GPU. However, the attestation does not
identify what the GPU is running. Ordinarily, this is not an
issue as the trust domain is expected to perform that role.
Attack Setup. We then install an NVIDIA 3060 GPU
in our local attack device, set up VLLM-PROXY outside of
TDX, and override all functionality that interfaces with TDX
or CC. We modify it to forward the GPU attestation call
to an external H100-equipped server. When a user requests
attestations from our malicious VLLM-PROXY server, it
generates a forged TDX quote and on-demand fetches a
GPU attestation from a rented server equipped with an H100
running our TDX VM.? As NVIDIA does not bind the
H100 to identities of specific VMs, our malicious VLLM-
PROXY successfully passes both TDX and CC attestations.
Consequences. As part of our attack, we are able to
setup the VLLM-PROXY end-user software, and have it
fetch an attestation from our server. The software success-
fully verifies the attestation with NVIDIA, and recommends
using AUTOMATA’s on-chain DCAP verification service to
verify the TDX quote. We additionally demonstrate how we
subvert AUTOMATA’s offerings in Appendix D as this also
relies on TDX. As such, a user is (incorrectly) cryptograph-
ically convinced that their GPU calls are executing inside a
TDX VM with an NVIDIA CC instance, while in reality
it is running outside of any TEE guarantees. Generative
Al is a rapidly growing field, estimated to grow to $4.8
trillion by 2033 [73]. With this attack, a provider could
multiplex a single H100 to provide attestations for hundreds
of instances. Similarly, a malicious LLM host could covertly
log all LLM requests while claiming confidentiality. While
an individual H100 still retails for over $20,000 as of the
time of writing, a spot instance costs less than $2.50 per
hour [74]. With on-demand attestations, a provider could
also reuse older hardware yet still attest a workload is
running in an H100-equipped trust domain.

9. Directly Extracting Secrets from Enclaves

While our previous attacks focus on utilizing our ex-
tracted PCK and attestation keys to forge arbitrary DCAP
quotes, we now show that the use of deterministic memory
encryption allows us to break the security guarantees of an
SGX enclave without ever even looking at the attestation
process. We are able to directly reconstruct a cryptographic
private key during the execution of an application enclave
from the SECRET network. Then, we utilize our recovered
key to completely break the confidentiality requirements of
SECRET without needing to forge attestation information.

9.1. SECRET Network Overview

SECRET network was one of the first TEE-based
blockchains to reach significant adoption, launching its

2. We note that this TDX VM honestly performs the CC attestation
process on the cloud server, returning the results to us. No attack-specific
code is ever run on the rented server and no data is retained afterwards.



privacy-preserving smart contracts feature in 2020. Most
blockchains are completely transparent by design, allowing
users to review all contract state and transaction data. To
preserve the privacy of this data, numerous projects have
proposed an alternative TEE-based approach [75, 76, 77,
78, 79, 80] by moving smart contracts into the enclave.

SECRET’s Architecture. SECRET consists of an SGX-
based smart contract execution layer adapted to run within
an enclave, with an independent consensus layer. To send
messages to smart contracts, users derive an encryption key
from a master public key, and include the ciphertext in a
transaction. The corresponding private key, derived from the
consensus seed, is replicated throughout the network and
sealed within SGX enclaves. To allow rolling the consensus
seed in the event of compromise, the SECRET network
maintains both the initial and current seeds.

Registering Validator Nodes. Validators are operators on
the SECRET network which execute transactions and validate
a new consensus state after each transaction. To execute a
transaction, validators must be able to decrypt transactions
and thus receive the consensus seed. New validator nodes
use remote attestation to register with SECRET network.
First, the new node creates an ephemeral keypair for use
with the Curve25519 ECDH (Elliptic-Curve Diffie-Hellman)
key agreement scheme. More specifically, Diffie-Hellman
lets the new node and any validator node already part of
SECRET’s network derive the same shared secret from their
own private key and the other node’s public key. This shared
secret serves as the key to encrypt and decrypt the consensus
seeds using 128-bit AES-SIV with the new node’s public key
as additional data. Next, the node creates an attestation re-
port used to authenticate with the blockchain. The attestation
report combines the DCAP quote and collateral, where the
first 32 bytes of the DCAP quote’s report data field contains
the new node’s public key. To join the network, the new node
broadcasts a transaction containing the sender address of its
wallet and the attestation report to the blockchain.
Existing nodes in the network observe this transaction
and use their own enclave to verify the attestation report. If
the checks pass, the node unseals the consensus seeds, and
encrypts them with the ECDH-derived shared secret key. Fi-
nally, the node updates the transaction with the concatenated
ciphertexts as the encrypted_seed. Next, the joining
node queries the blockchain for the encrypted_seed
with its own public key to retrieve the ciphertexts, and
decrypts each of them using the ECDH-derived shared secret
key to retrieve the consensus seeds. Finally, it seals these
consensus seeds inside its enclave to ensure confidentiality.
Setup. We use the hardware setup from Section 3 to set up
a SECRET validator joining their Pulsar-3 testnet, running an
unmodified SECRET binary and enclave (version 1.17.1).

9.2. Attacking ECDH Directly

We observe that, rather than using an extracted ECDSA
key to sign our own DCAP quotes, our memory interposition
setup actually allows us to reconstruct the node’s ECDH

private key from an unmodified enclave, highlighting that
these issues affect all enclave developers.

The ECDH algorithm performs a scalar multiplication
on the consensus seed exchange public key and the node’s
private key. SECRET’s enclave performs this multiplication
using the Montgomery Ladder algorithm, which slides over
the private key bits using a 2-bit window (previous and cur-
rent) with every iteration. See Listing 2. The code computes
choice, an XOR of these two bits (Line 4), to determine if
it should swap two bits (x0 and x1) or not (Line 5). Thus,
if we can observe whether x0 is the same or not before and
after executing this conditional swap, we can recover the
value of choice in each iteration, allowing us to recover
the private key. See Appendix Cfor a detailed explanation.

let mut bits = scalar.bits_le() .rev();

let mut prev_bit = bits.next ().unwrap/();

for cur_bit in bits {
let choice = prev_bit ~ cur_bit;
conditional_swap (x0, x1, choice);
differential_add_and_double (x0, x1, aff_u);
prev_bit = cur_bit;

}

L T Y T

Listing 2: SECRET’s simplified Montgomery Ladder implementation.

Controlling the Code Execution. As we want to ob-
serve the state of x0 before and after the conditional swap
(Line 5), we have to be able to halt the enclave’s execution
at the right locations. We perform a controlled-channel
attack [40] by unmapping enclave pages before and after the
conditional swap, executing the enclave until a page fault
occurs and then remapping the page to reach the correct
locations. Appendix C describes this in more detail.
Locating x0. To obtain the exact address of x0 we sign
Secret’s enclave to run in debug mode and run it with sgx—
gdb attached. Additionally, to ensure that our virtual address
space is consistent between runs, we disable ASLR.
Collecting Traces. Next, using our techniques from Sec-
tion 5, we observe the DRAM traffic to obtain the ciphertext
before and after the conditional swap in each loop iteration.
For each loop iteration, we infer that choice is 0 if the
ciphertexts are the same, and 1 otherwise. We ultimately
recover a stream of 252 bits, the state of choice.
Recovering the Private Key. We execute our attack and find
it takes approximately 90 minutes to collect all necessary
traces. Given a trace of choice’s state, we then proceed to
reconstruct the private key. Note that we need the previous
bit in each loop iteration to determine the value of the
current bit, but that we are missing the last three bits and
the first bit. Thus, we simply try all possibilities 0 and 1,
yielding 2* = 16 possible candidate private keys.
Verifying the Private Key. To identify the correct private
key, we use each candidate key to forge an encrypted
consensus seed to pass to init_node, which only decrypts
our encrypted consensus seed if the candidate private key is
correct, as AES-SIV is an authentication (AEAD) scheme.
Decrypting the Consensus Seed. We now broadcast a
registration transaction onto SECRET’s blockchain with our



node’s public key to obtain the encrypted consensus seed.
Finally, we decrypt it with the ECDH-derived shared secret.
Decrypting Transactions. One of the main applications
of the SECRET network is to preserve the privacy of trans-
actions, allowing parties to privately transfer control over
digital assets. As previously demonstrated by [20], access
to the initial and current consensus seeds lets us directly
decrypt any transaction on SECRET’s network, thus allowing
us to completely breach SECRET’s confidentiality guarantees
without ever even seeing an attestation key.

10. Attacking Confidential SEV-SNP VMs

Moving beyond Intel’s TEE implementation, in this sec-
tion we demonstrate how our attack affects AMD’s SEV-
SNP (Secure Encrypted Virtualization-Secure Nested Pag-
ing) [2] running on EPYC servers based on the Zen 5
architecture. We note that these incorporate AMD’s cipher-
text hiding features, aiming to mitigate prior software-based
ciphertext attacks.

More specifically, following [24] we attack a SEV-
SNP protected confidential virtual machine (CVM) running
OpenSSL’s ECDSA signature operations. However, as ci-
phertext hiding is enabled, we are unable to recover the
secret key using any software-based ciphertext attacks. After
using our bus interposition setup to confirm that SEV-SNP’s
memory encryption exhibits the same deterministic behavior
found in Section 6.1, we proceed to key extraction using our
logic analyzer setup.

10.1. AMD SEV-SNP Overview

AMD SEV-SNP. 1In 2016, AMD introduced SEV as a
first-level offering for CVMs and memory encryption, with
additional features being added over time, culminating in
the release of SEV-SNP in 2020 [2]. SEV-SNP provides
memory confidentiality and integrity protection, encryption
of VM state, and multi-level paging. Unlike TDX, SEV-SNP
allows the hypervisor to observe the contents of encrypted
memory, allowing software exploitation of deterministic en-
cryption [7]. To address various attacks resulting in part
from this ability to view ciphertexts from software, AMD
has introduced a feature known as Ciphertext Hiding [6]
starting with Sth generation EPYC server processors, which
prevents the hypervisor from observing encrypted memory
contents. A VM can set a policy ensuring it was launched
with Ciphertext Hiding enabled.

AMD SME. The memory encryption engine powering
SEV-SNP is known as AMD Secure Memory Encryption
(SME) [81]. Similarly to Intel’s use of AES-XTS, AMD
SME utilizes the XEX or XTS mode on a block size of 16
or 32 bytes [82]. To verify SME results in deterministic en-
cryption, we replicated the findings in Section 6.1, observing
deterministic encryption based on the physical address and
plaintext data.

Target Machine. We targeted a server with an AMD EPYC
9015 CPU installed on an ASRockRack BERGAMODS-
2L2T motherboard, running BIOS version 10.02 with CPU

microcode 0xb002116. The machine has a single 16GB
RDIMM of DDRS memory, capable of running at 4800
MT/s. For software, our target machine runs Ubuntu 24.04
with a custom Linux kernel based on version 6.14.6 contain-
ing patches based on SEV-Step [83] and to enable Ciphertext
Hiding [84]. The machine has SEV-SNP firmware version
1.55.54. Furthermore, we ensured that the SEV firmware
reports that Ciphertext Hiding is fully enabled.

Enclave Memory and Control Channel. Unlike with
Intel SGX and TDX, AMD SEV-SNP does not require all
memory controller channels to be filled, and thus we do not
need to control page allocation as done in Section 5.2. In
order to obtain an equivalent control channel to the SGX
one described in Section 5.3, we utilize the SEV-Step [83]
framework, merged on top of a more recent Linux kernel.
This framework provides a page-granular control channel
primitive identical to the one on SGX. Finally, unlike SGX
and TDX, AMD SEV-SNP allows caching for a specific
memory page to be disabled via mTRRs [85], so cache
thrashing is unnecessary.

10.2. An OpenSSL ECDSA Key Recovery Attack

To show the impact of interposition attacks on CVMs

protected with SEV-SNP, we recover the ECDSA private
key from a single ECDSA signing operation in the OpenSSL
cryptographic library. As the cryptographic code is constant-
time, we are only able to recover the private key due to
leaking information about the plaintext contents of memory
via deterministic encryption.
Setup. As a target, we set up an SEV-SNP protected CVM
running Ubuntu 24.04 with OpenSSL version 3.0.13 as
packaged in Ubuntu. We created a simple test applica-
tion which creates a random ECDSA key for the curve
secp256k1, used in Bitcoin wallets, and signs a message
with the OpenSSL EVP_DigestSign APL

OpenSSL Montgomery Ladder. As part of an ECDSA
signature, OpenSSL performs a scalar-by-point multiplica-
tion with a Montgomery Ladder algorithm [86]. A simplified
version is shown in Listing 3. Similarly to the Montgomery
Ladder implementation in Section 9, OpenSSL slides over
windows of 2 bits, performing a conditional swap then an
add-and-double. For each window, the code computes a bit
choice as the XOR of the previous choice and current
scalar bit (Line 2). Then, a constant time conditional swap
is performed on two points pO and pl based on choice
(Line 3), and an add and double ladder step is performed on
both points (Line 4). If we can determine if pO and p1 were
swapped, we can recover the sequence of choice bits and
thus the complete scalar, which in the case of ECDSA, is
the secret nonce.

Key Extraction. Unlike in Cipherleaks’ [24] attack on
the VM register state, we instead observe the contents of
the point p0 in memory with our interposer setup. We
note that if the contents of p0O change between before and
after executing Line 3, then the choice bit must have
been 1, and vice-versa. To obtain the contents of pO at



for (i = scalar_bits - 1; i >= 0; i——) {
current_bit = bit(scalar, i) ~ previous;
conditional_swap (p0, pl, bit);
differential_add_and_double (p0, pl);
previous "= choice;

o U B W o —

}

Listing 3: OpenSSL’s simplified Montgomery Ladder implementation.

these times, we utilize the page-granular control channel
to interrupt the CVM once when conditional_swap
reads p0 in Line 3, and again during the execution of the
add_and_double ladder step in Line 4. Each time, we
arm our logic analyzer before resuming the CVM, recording
the memory contents upon first read. We find our attack
takes 1 hour to record 514 memory reads and recovers all
the choice bits with 100% accuracy. With the nonce in
hand, we recovered the ECDSA signing key via the same
process as Section 6.3 within a few seconds.

11. Mitigations and Conclusions

Avoiding Deterministic Encryption. We note that one
of the fundamental issues with server TEEs is the use of
deterministic memory encryption. This is a step back from
the prior SGX implementation on CPUs meant for the PC
market, where the hardware used on-die Merkle trees to pro-
vide confidentiality and integrity guarantees. Furthermore,
to prevent attackers from observing the same ciphertexts
when the same plaintext is stored at the same physical ad-
dress, these implementations also provided freshness guar-
antees [8]. Unfortunately, the use of Merkle trees carries
substantial overhead limiting the EPC size to 512 MB.
Thus, reconciling these goals and obtaining scalable mem-
ory encryption without sacrificing these guarantees warrants
further research. Performance issues aside, for current CPUs
Intel has indicated that it is impossible to issue a microcode
to update the inner workings of the memory encryption
engine. Thus, we expect bus interposition to remain a viable
attack vector in the foreseeable future.

Bus Speeds. The ability to lower the memory frequency
from 4800 MT/s to 3200 MT/s makes our attacks somewhat
cheaper. However, we warn against using bus speeds as
attack mitigations as high speed interposition setups are
likely to become readily-available in the near future.
Adding Entropy. One effective solution to solving issues
resulting from deterministic encryption is to ensure that ev-
ery 128-bit block has sufficient entropy to prevent ciphertext
repetition. This can be done via a custom memory layout [7]
where each 64-bit data block is followed by a 64-bit counter
with a random initial value. While effective at mitigating
our attack in principle, we note that this needs to be applied
consistently throughout the entire software stack including
the CVM’s OS kernel and the Intel-controlled and signed
PCE enclave. Moreover, this solution does not mitigate other
issues such as memory integrity or relay attacks.
Permissioning Systems and Secure Multiparty Com-
putations (MPC). We note that another common issue

is that many TEE deployments are permissionless, i.e., a
node can simply present a trusted attestation status without
further context to be entrusted with security-critical roles.
Unfortunately, this implies that secrets are often physically
provisioned to attackers, where they can be extracted. Thus,
TEE developers should either limit deployment to highly
reputable cloud providers with strong physical security prac-
tices, or they must accept the possibility of a breach. To mit-
igate the latter scenario, MPC-based systems can distribute
the trust among multiple parties, requiring a simultaneous
breach to extract secrets [87]. However, as MPC-based
constructions result in significant overhead, we leave the
task of efficiently implementing these to future work.
Location Verification and CPU Whitelisting. A final
countermeasure is to augment the attestation mechanism
present in many server-grade TEEs with location or cloud
verification primitives. These in turn will allow users to
ascertain that TEE hardware is physically located in secure
cloud environments as opposed to adversarial hands. An
even more restrictive approach would be to allow users to
whitelist specific CPU instances which are known to be in
physically secure locations, preventing other CPUs from the
same architecture or model from obtaining secrets. However
we note that both approaches will require changes to the cur-
rent Intel-controlled attestation protocol, with cloud vendors
being major stakeholders aimed at safeguarding against any
potential of infrastructure fingerprinting via user APIs.
Conclusion. In this paper we explored the security implica-
tions of mounting memory interposition attacks on DDRS5-
based TEE implementations, demonstrating how hobbyists
can construct a memory interposition setup for under $1,000.
Next, we used our setup to attack modern TEE hardware
across Intel, AMD and NVIDIA, demonstrating for the first
time significant TEE weakness in these machines. Finally,
we use our ability to extract TDX and SGX attestation
keys from machines in fully trusted status to breach the
confidentiality and integrity guarantees of various real-world
deployments as presented in our case studies.
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Appendix A.
Reverse Engineered Physical Address Mapping

We provide full details of reverse engineered physical
address mapping functions from Section 5.1. We denote a
64-bit physical address as A, with A, referring to the least
significant bit of A and Ags the most significant bit of A.
Similarly, we denote the the least significant bit of an n-
bit location as Locationg, and Location,_; the most
significant bit. X, ;) refers to the set of bits from a to b
inclusive. First, we list all bits with linear relationships and
their formulas.

Location Physical Address Bits

ChannelAddress. .7 | 4.7

ChannelAddressg Ajg

ChannelAddressp.. o7 | Ap2..30]

RankAddress[O___5] A[o_, 5]

RankAddressg Ay

RankAddressy A1

RankAddress(s.. o] Ap2...30]

Location Physical Address Bits

Columnp. 3 A[2...5]

Columny Aig

Columns Az

Columng Aog

Columny Asg

Columng Asp

ChipSelect Ag

BankGroupg A7 @ Asp

BankGroup; Ao © Azp @ Azz @ Aszy
DAzs D Azg © As7

BankGroups Ao @ Ass ® Ase © Asr

MCIDg As ® A14 B Aso

MCID; Ag @ A1 @ A7 @ Ass

ChannelId Ag & A5 B Aos

Bankg A3 ® Azz @ Asy
DAzs @ Azg © As7

Bank; A1y © Asy © Ass
©Ass © Asr

Rowg Aoy

Rowy A19

RoOwWs Aso

Rowsg Ao

Rowy A25

Rows Agg

Rowg Agr

Rowry A15

Rowg A

Rowg A

Rowqg Az

Next, we detail boolean formulas in conjunctive nor-
mal form for all non-linear bits. We note that the
ChannelAddress, RankAddress, Column, and Row
bits all share functions, but the order of Row bits 12 and 13
are different.

(ChannelAddressss, RankAddressar, Columng) <
Az A (As2 V —Az7) A (—As2 V Agz V Agy V Ass V Asg V

Asz7) N (—Ase V2 Az7) A (2 A3V As7) A (mAsg Vo Aszr) A
(—As3V 2 Az7)

(ChannelAddressag, RankAddressag, Rowiy) —
(Agl V ﬁAgg) A (ﬁAgl V A32) A (A33 V Asq V Asg V Asg V
As7) N (—Ase V1 Az7r) A (mAss V1 Azr) A (mAsg V1 Aszr) A
(mA33V 2 Az7) A (A3 V Azz V Azg V Azs V Ase)
(ChannelAddresssg, RankAddressag, Row;s) —
(Az1V Aszz) A (Asz2 V Aszz) A (mAse V 2 A3z7) A (0A35 V
—Az7) N (2 A34 V= Az7) AN (2 A3V 2 A3V As3) A (A3 V
—Az7) A (mA31 V nAsp V Ay V Azs V Asg V Agy)
(ChannelAddresss), RankAddresssg, Rows) —
(A1 V Asa) A (As2 V Azg) A (Az6 V —Az7) A (2A35 V
—Az7) A (—As1 V mAszp V Asg V mAzy) A (mAs3 V Asgg) A
(mA34V 2 A37) A (mA31 V —A3p V Azz V Azs V Aszg V Asy)
(ChannelAddresssy, RankAddresssy, Rowiy) —
(A31 V Ass) A (Asp V Ass) A (mAz V —A37) A (mAz V
= A3V A3z V AzqV - Azs) A (2 Az4V Azs) A(—Az3V Azs) A
(—Az5 V 2 A37) A (mA31 V2 Az V Azz V Azg V Aszg V Azy)
(ChannelAddressss, RankAddressss, Rowss) —
(A3 V Ase) A (—mAze V —As7) A (Asa V Agg) A (A3 V
— Az V AzzV Azq V Azs V Az7) A (mAzs V Aze) A (mA34V
Asg) N (mAszz V Asg)

Appendix B.
Secure Attestation Extended Details

We now describe Intel SGX and TDX attestation in
detail, which relies on the Intel Data Center Attestation
Primitives (DCAP) libraries. We first describe the entities
involved in attestation, how local attestation is done, then
how remote attestation quotes are generated and verified.
Attestation Entities and Services. Before outlining the
flow of Intel’s attestation protocol, we first introduce the en-
tities and services involved in performing attestation. More
specifically, Intel provisions keys to CPUs and provides
Intel-signed SGX enclaves for attestation. The Intel-signed
Provisioning Certification Enclave (PCE) provisions other
enclaves with attestation keys, while the Quoting Enclave
(QE) ingests local attestation reports to generate remotely
attestable quotes. While both SGX and TDX use the same
PCE, the QEs differ in that they attest SGX or TDX reports
respectively using the corresponding attestation keys.

Next, Intel also runs two services supporting attesta-
tion, the Registration Service (RS) for CPU registration
and provisioning and the Provisioning Certification Ser-
vice (PCS) to serve the current TCB information, signed
Provisioning Certification Key (PCK) certificates, and the
certificate chains to verify PCK certificates. The attesting
user application, a SGX enclave or TDX VM, produces
reports. The remote verifier uses the PCS to verify these
reports as quotes. See Figure 7 for a diagram showing the
interaction between these parties, which we now describe.
Key Generation. To generate remotely attestable quotes,
the machine first goes through an initialization and registra-
tion process. During production, Intel fuses the Root Provi-
sioning Key (RPK) and Root Seal Key (RSK) into the CPU.
These keys are used to derive other keys using EGETKEY,
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Figure 7: DCAP attestation flow in Intel SGX and TDX. Blue arrows
represent the flow of raw data. Orange arrows represent key derivation
or signing operations where the actual keys are never transferred. Green
arrows represent data transfer over the internet.

and are inaccessible from software. To register the machine
with the RS [88], it first retrieves the Platform Manifest
from a UEFI variables ((D in Figure 7), which contains
root keys [89] and is encrypted by the microcode with the
public key of Intel’s RS. Next, the PCE derives a Platform
Provisioning ID (PPID) from the RPK and its MRSIGNER
measurement ). The machine sends the Platform Manifest
and the PPID to the RS ) [89], which then confirms the
PPID and derives and signs the Provisioning Certification
Key (PCK) certificates available through the PCS @.

The PCE and RS derive the PCK from the RPK, the
PCE’s MRSIGNER and the CPU microcode Software Ver-
sion Numbers (SVNs) (3. Next, the QEs derive an attesta-
tion key from the RPK, its MRSIGNER and SVN ®. The
QE generates a report with the QE’s key in the report body,
which is then verified by the PCE. Next, the PCE uses the
PCK to sign the QE’s key (. Finally, the QE retrieves the
PCK certificate chain from the PCS using the PPID (@),
and uses the signature and this certificate chain to generate
certification data to be included in future quotes. Upon
initialization, the PCE has derived an Intel-signed PCK, and
the QE has derived PCE-signed attestation keys, creating a
signature chain tracing back to Intel’s Root of Trust [42].

Local Attestation. Before TEE code can prove (or attest)
to a remote verifier, it must first prove its own identity to the
Quoting Enclave (QE) through local attestation. First, the
CPU collects the environment’s measurements in a report
through the EREPORT instruction (SGX) and through the

TD module’s TDG.MR.REPORT instruction, which calls
SEAMREPORT (TDX). Next, the CPU uses a report key
to compute a cryptographic Message Authentication Code
(MAC) over the report’s contents (9 in Figure 7). These
can then be verified using EVERIFYREPORT (SGX) or
EVERIFYREPORT?2 (TDX) [8].

Remote Attestation. To create a remotely attestable quote,
the untrusted host passes this report from the enclave or
TD to the respective SGX or TDX quoting enclave (@
in Figure 7). The quote contains the QE’s public key, the
certification data from the PCE, and the CPU microcode’s
and QE’s SVNs. Next, the TEE code receives the quote and
sends it to the remote validator to verify the quote . The
verifier first parses the fmspc value to identify the CPU
and retrieve the TCB info from the PCS, which includes a
set of SVNSs, the corresponding mitigation status and Intel’s
certification chain © [88]. For TDX, the PCS also returns
information about the current TDX module. Finally, the
verifier validates the signature chain in the report, verifying
that the QE correctly signed the report, the PCE correctly
signed the QE’s report, all the way to the root of trust, as
well as that the quote’s measurements are as expected.

Appendix C.
SECRET Network Extended Details

For completeness, we provide a more detailed overview
of our ECDH attack described in Section 9 here. More
specifically, we delve deeper into cryptographic details and
describe how we obtain required information for the attack.
Extended Cryptographic Details. The ECDH algorithm
performs a scalar multiplication on the consensus seed ex-
change public key as a Montgomery point with the node’s
private key as the scalar. SECRET’s enclave performs this
multiplication using the Montgomery Ladder algorithm from
curve25519-dalek 4.0.0-rc.3 as shown in List-
ing 4. This implementation slides over the scalar bits in big
endian using a 2-bit window with every iteration having ac-
cess to prev_bit and cur_bit. Furthermore, depending
on the value of choice = prev_bit @ cur_bit (Line
4), conditional_swap () (Line 5) swaps x0 and x1.
Thus, if we can observe whether the state of x0 is the same
or not before and after executing this conditional swap, we
can recover the value of choice in each iteration, allowing
us to recover the original scalar, and thus the private key.

let mut bits = scalar.bits_le() .rev();

let mut prev_bit = bits.next ().unwrap();

for cur_bit in bits {
let choice = prev_bit cur_bit;
conditional_swap (x0, x1, choice);
differential_add_and_double (x0, x1, aff_u);
prev_bit = cur_bit;

L Y N S TR

Listing 4: SECRET’s simplified Montgomery Ladder implementation

Recovering the Private Key. With a trace of choice’s
state, we proceed to reconstruct the scalar bits, as choice



= prev_bit ¢ cur_bit. However, note that we need the
previous bit in each loop iteration to determine the value of
the current bit, but as the Montgomery multiplication skips
the MSB, we cannot recover the the scalar’s initial bit. Thus,
we recover two candidates for the choice bits.

Furthermore, the MSB and the last 3 LSBs are discarded
from the 256-bit scalar, allowing us to only recover 252 bits.
We simply try all possibilities for the missing 4 bits, yielding
24 = 16 candidate private keys.

To identify the correct private key, we use each candidate
key to forge an encrypted consensus seed to pass to init_n
ode. init_node only successfully decrypts our encrypted
consensus seed if the candidate private key is correct, as
AES-SIV is an authentication (AEAD) scheme.

neg %eax
vmovdqu 0xe0 (%1
vmovdqu 0x60 (%rsp), Symm2
vpxor %SymmO, $ymm2, $ymm3
vmovd %eax, sxmmé
vpbroadcastd %xmm4, $ymm4
vpand Symm4, $ymm3 -
vpxor SymmO, %y y
9 vmovdgqu nm0, Oxe0 ($rsp)

e IR TN N S ST R

Listing 5: Disassembly of the conditional swap in the Montgomery Ladder
implementation at enclave addresses 0x29bff3 - 0x29c022.

Controlling the Code Execution. As we want to observe
the state of x0 before and after the conditional swap, we
need to halt the enclave’s execution at the right locations.
We use objdump to inspect the assembly code of the
conditional swap as shown in Listing 5. In particular, condi-
tionally swapping is implemented as ((x0 & x1) A mask)
@ x0 where mask is expanded from choice to either
all zeros if choice is zero, or all ones otherwise. This
expansion occurs through a combination of the neg (Line
1) and vpbroadcastd (Line 6) instructions, whereas
conditionally swapping is implemented through vpand and
vpxor instructions (Lines 4, 7 and 8).

We note that the Montgomery multiplication function
itself is located at relative address 0x29b00, and that the
loop spans from relative address 0x29bfb0 up to 0x29c
91f, crossing a page boundary at 029xc000. Furthermore,
0x29c13d calls another page at address 0x42eal0.

Thus, we can perform a controlled-channel attack [40]
by unmapping 0x29b000, executing the enclave until a
page fault occurs and then remapping the page to reach
the Montgomery multiplication function itself. Then we
alternate between two steps until we reach the end of the
function. In the first step, we simply target page 0x29c000,
which is the second page of the loop, but is conveniently
located before the conditional swap to reach the state before
the conditional swap. In the second step, we target page
0x42e000 (the target of a function call) to reach the state
after the conditional swap. After these two steps we target
page 0x29c000 followed by page 0x29b000 to complete
one iteration of the loop.

Locating x0. Now that we can control the code execution,
we want to infer the state of x0O before and after the

conditional swap. We find that x0 is located on the stack
at Oxe0 (%$rsp) and has a size of 40 bytes. However,
to perform our attack we need to know the exact stack
address of 0xe0 (%rsp). To achieve this, after launching
the enclave, we read the enclave’s memory maps from
/proc/PID/maps and parse the stack area.

Appendix D.
AUTOMATA

Overview. AUTOMATA is an attestation layer that integrates
TEEs like TDX into decentralized systems [90]. They offer
attestation SDKs and several fully-audited [91] means to
verify TDX quotes on-chain for popular ecosystems such as
Ethereum, Polygon, and Arbitrum [92]. AUTOMATA pro-
vides on-chain attestation, which performs the full veri-
fication entirely on-chain via a smart contract and their
own Provisioning Certificate Caching Service (PCCS). Since
smart contracts cannot interact with the internet, their PCCS
stores the collaterals required to verify attestations on-chain.

Because of the compute-constrained nature of
blockchains, AUTOMATA also provides ZK proof attestation,
which verifies zero-knowledge proofs of successful
attestation. This offloads the attestation verification and
proof generation from the smart contracts, leaving a much
lighter proof verification instead. For proof generation, users
can choose between two zero-knowledge RISC-V VMs,
RISC Zero [93] and SP1 [94]. Both are zero-knowledge
virtual machines (zkVM) that provide proof of correct
execution of an executed program.

Given that these two implementations are both just
different instances of the DCAP quote verification process,
they are susceptible to accepting our forged quotes (because
our created attestation keys are actually valid). As such,
attacking AUTOMATA requires massaging the raw quote
into a format that is accepted by the smart contract, and
submitting it to the network. Since these quotes pass net-
work verification as valid, they are stored on-chain, thus
subverting any projects relying on AUTOMATA as well.
On-Chain Attestation. First, using the techniques from
Section 6.3, we forge a valid quote. With libraries provided
by AUTOMATA, we then create a Rust program to take
our quote, encode it, and submit it to their test network.
We initiate on-chain verification, wherein our forged quote
successfully verifies.

ZK Proof Attestation. Next, we set up an aforementioned
zkVM, SP1, on a local machine. The proof generation pro-
cess is very resource intensive, SO0 AUTOMATA recommends
using the SP1 decentralized proving network. Critically,
this means that quote construction is separate from proof
generation. We feed in a forged quote, and the SP1 VM
verifies the quote, generating a corresponding proof. We use
our program from earlier to submit this to the test network
where it verifies the proof and accepts our quote.

Consequences. Recall Section 8, wherein VLLM-PROXY
recommends the use of AUTOMATA for on-chain quote
verification. Our attack demonstrates how it, and other



projects relying on AUTOMATA, lose the guarantees pro-
vided by TDX. Other projects relying on AUTOMATA’s
attestation layer are ElizaOS [95], an Al agent framework;
Espresso [96], a cross-chain compatibility protocol; and
Puffer’s UniFi [97], an Ethereum layer 2 rollup.
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